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A New Methodology for Determining Point-of-Gaze
in Head-Mounted Eye Tracking Systems

Lawrence H. Yu, Member, IEEE, and Moshe Eizenman*

Abstract—The ability to determine point-of-gaze with respect to
an observed scene provides significant insight into human cognitive
processes, since shifts in gaze position are generally guided by shifts
in attentional focus. Using a head-mounted eye tracking system, a
new methodology based on four or more point correspondences in
two views was developed to reconstruct the subject’s point-of-gaze.
For exact point correspondences, 95% of the reconstruction errors
are less than 0.32 when the homography algorithm with distor-
tion compensation is used to determine gaze position. In a typical
visual scanning experiment, 95% of the reconstruction errors are
less than 0.90 . Analysis of normalization techniques that reduce
the sensitivity of the homography algorithm to input errors sug-
gests that the point correspondences should be arranged in a ra-
dially symmetric distribution around the area to be scanned. The
new methodology was used in a clinical study on visual selective
attention and mood disorders; this study showed that depressed
subjects spent significantly more time looking at images with dys-
phoric themes than normal control subjects.

Index Terms—Eye tracking systems, homography, point-of-
gaze, visual selective attention.

I. INTRODUCTION

V ISUAL information plays a crucial role in our ability to
interact with the world. Traditionally, we tend to think of

the eyes as passive receivers that relay the information required
for a particular task to the brain. The role of eye movements as
potential indicators of attentional behavior is often overlooked,
since our eye movements are generally inaccessible to conscious
scrutiny. Under normal viewing conditions, eye movements are
automatic in that individuals commonly look at stimuli that at-
tract their attention [1]; indeed, shifts in gaze positions closely
follow and are guided by shifts in attentional focus [2], [3]. It is
this insight into human cognitive processes that motivates many
of the practical applications for point-of-gaze tracking technolo-
gies. Point-of-gaze tracking technologies can be used, for ex-
ample, to measure and analyze the visual scan patterns of pi-
lots in the cockpit of an aircraft [4]. By comparing the scan-
ning behavior of expert and amateur pilots in standard opera-
tional sequences, efficient scanning strategies can be identified,
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and inferences can be made between visual scan patterns and
hazard perception abilities. Point-of-gaze tracking technologies
are also commonly used in the design and evaluation of human-
machine interfaces [5], [6].

The objective of a point-of-gaze estimation methodology is to
calculate the intersection of the gaze vector with the observed
scene, so that the elements in a visual scene that are being fix-
ated upon by the subject can be determined. Head-mounted eye
tracking systems are the preferred choice for estimating the gaze
vector in applications that require accurate point-of-gaze es-
timates while allowing abrupt and relatively free head move-
ments. Most head-mounted eye tracking systems include a head-
mounted video camera to continuously record the scene. The use
of a scene camera allows eye position estimates to be superim-
posed on images of the scene, enabling real-time viewing of the
subject’s point-of-gaze.

In order to estimate point-of-gaze with head-mounted eye
tracking systems, knowledge of the following variables is re-
quired: the angular rotation of the eye relative to the head, the
position of the head relative to the scene, and the locations of ob-
jects in the observed scene. The angular position of the eye rela-
tive to the head can be measured by head-mounted eye trackers
[7]. The position of the head relative to the scene is typically
measured by position sensors that determine the three-dimen-
sional (3-D) head position with respect to a fixed coordinate
system. Various types of transducers (magnetic, ultrasonic, me-
chanical, etc.) are used to sense head position, of which the
most commonly used is the magnetic position transducer [8].
If the objects in the visual field are also defined with respect to
the fixed coordinate system, then Euclidean transformations be-
tween the coordinate systems centered on the eye and head [9]
can be used to calculate where the gaze vector intersects with
the defined objects.

The above approach has several limitations: 1) high system
complexity due to the use of separate eye and head tracking sys-
tems; 2) restricted subject mobility due to the limited range of
the head sensor; and 3) susceptibility to distortion from electro-
magnetic interference and ferrous materials (for magnetic po-
sition sensors). Also, since accurate measurements of the 3-D
positions of objects in the environment are required, the ability
to use this system in applications that require portability and a
changing visual scene is limited.

The point-of-gaze estimation methodology presented in this
paper overcomes all of the above limitations. The new method-
ology uses features extracted from the video of the scene camera
to determine the position of the head relative to the objects in
the scene. Since the eye position data is provided with respect
to the head, these two data sets are readily combined to deter-
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mine the fixation behavior on objects in the scene. Section II
of this paper provides a description of the point-of-gaze estima-
tion methodology, and the performance of the methodology is
assessed in Section III. The utility of the methodology is sub-
sequently demonstrated in a clinical study on visual selective
attention in major depressive disorder.

II. DESCRIPTION OF METHODOLOGY

A. Approach

In head-mounted eye tracking systems where eye position es-
timates are superimposed on images from a scene camera, the
following steps can be taken to determine fixation behavior on
objects in a static scene: 1) define the objects of interest on a
single image from the scene camera (denoted as the reference
image); 2) determine the geometric relationships (mappings) be-
tween objects of interest in the reference image and each subse-
quent image; and 3) use these mappings to transfer eye position
data to the reference image, where the point-of-gaze relative to
the objects defined in step 1 can be determined.

In order to determine the image-to-image mappings, the
point-of-gaze estimation methodology uses two-dimensional
(2-D) feature correspondences. Each frame in the video se-
quence is processed to locate, extract, and label 2-D features
(typically points) in the scene. The detected 2-D points are as-
sociated with their corresponding points in other frames to form
a set of point correspondences. These point correspondences
are then used to solve the two-view transfer problem, so that
the eye position data can be transferred to the reference image
where the objects are defined.

B. Two-View Transfer

The two-view transfer problem is concerned with the transfer
of features seen in one view to a second view, given the loca-
tion of features available in each image coordinate frame. In
this paper, bold letters are used to denote vectors (e.g. ), while
typewritten upper case letters are used to denote matrices (e.g.

). Homogeneous coordinates are used to represent both 2-D
and 3-D points; since homogeneous coordinates are defined up
to a scalar, the scale factor will be explicitly included in the
expression when .

Consider the situation where two images, and , are ob-
tained at two different time instants, and , by a camera
moving in a static environment with an unknown trajectory (see
Fig. 1). If feature points are visible to
the camera at both time instants, then point correspondences:

are formed in and from the
projection of these 3-D points to the respective image planes.
Given distinct point correspondences, we are interested in the
mapping of an arbitrary point specified in image plane
to its corresponding position in image plane . To solve
this problem, the image acquisition process first must be char-
acterized to determine the appropriate mapping between a 3-D
point in the world coordinate system and its
2-D image coordinates . The standard photogram-
metric camera model is an idealized geometric model that ac-
counts for perspective projection and the transformations be-
tween the different coordinate systems used [10]. Using this

Fig. 1. Two-view transfer illustrated using two images gathered by a
monocular camera in a static scene.

model, the mapping between Euclidean 3-D space coordinates
(in units of length) and 2-D image coordinates (in pixel coordi-
nates) can be expressed as a 3 4 projection matrix based on
ten camera parameters (four intrinsic and six extrinsic)

C

(1)

where is a 3 3 rotation matrix, is a 3 1 translation vector,
and is the intrinsic matrix. The six extrinsic camera parame-
ters define the position and orientation of the camera with re-
spect to the scene, and consist of the three rotation angles that
uniquely define and the three components of . The four in-
trinsic camera parameters in determine how the image coor-
dinates of a 3-D point are derived, given its 3-D position with
respect to the camera. The principal point ( , ) represents
the pixel coordinates of the intersection of the optical axis and
the digitized image. The ability to model rectangular pixels is
provided by and , which represent the focal length in units
of horizontal and vertical pixels, respectively.

Given two perspective views of a single rigid object obtained
using (1), it can be shown (using epipolar geometry) that the
two-view transfer problem cannot be solved uniquely regardless
of the number of point correspondences used [11]. If the config-
uration of the object points in 3-D space is restricted to coplanar
regions, however, a point-to-point mapping can be calculated
between two perspective views with only point correspondence
information. This is a reasonable simplification in many studies
of visual scanning behavior where the visual stimuli are pre-
sented on a computer screen or projected onto a flat screen.
Given point correspondences
in two views and restricting the 3-D point configuration to be
coplanar, the point-to-point mapping can be expressed as a 3
3 invertible matrix called a homography

(2)

Numerous methods are available for estimating the homog-
raphy [12]. In this paper, the approach is based on a linear
homography algorithm [13] that provides a unique closed-form
solution for , and avoids the high computational complexity
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and convergence issues of nonlinear iterative minimization al-
gorithms. For each point correspondence, (2) yields two equa-
tions that are linear in the matrix elements of , so solving for

is equivalent to solving for the vector in the homogeneous
matrix equation

(3)

where
is formed from the elements of the matrix , and the

matrix is formed by vertically stacking the ma-
trices

(4)
With four noncollinear point correspondences, it is possible

to solve for uniquely; taking the singular value decomposi-
tion of , the solution will be , the right singular vector that
corresponds to the smallest singular value of (0 in this case).
With point correspondences where no of the

point correspondences are collinear, there is no that
solves (3) exactly, so a total least squares (TLS) approach is
used to estimate that minimizes , the squared Euclidean
vector norm of . Using eigenanalysis to solve this minimiza-
tion problem subject to , the best estimate of must
be the eigenvector corresponding to the smallest eigenvalue of

, or the equivalent right singular vector corresponding to
the smallest singular value of .

C. Sensitivity to Errors in the Input Point Correspondences

An important issue regarding the homography algorithm is
its sensitivity to errors in the estimation of the point correspon-
dences. In this section, modifications to the point-of-gaze es-
timation methodology that improve its robustness to measure-
ment errors in the point correspondences are explored. When
more than four point correspondences are available, an appro-
priate input data normalization can be derived using an approach
similar to that taken for estimation of the fundamental matrix
[14]. If we denote and as the
observed point correspondences in the reference and subsequent
images, respectively, and and
as the respective normalized point correspondences, we can de-
fine two nonsingular 3 3 normalization matrices, and , such
that and . Note that the last rows of and

are constrained to be [0,0,1] so that the third components of
and remain 1. If the relationship between the normalized

point correspondences and is written as , then
the homography between the point correspondences can be ex-
pressed as .

The matrix in (3) can be written as , where is
the actual (but unknown) matrix associated with the case
where no input measurement errors are present, and is the error
matrix. Since the point correspondences in the reference frame
are manually selected and verified, it is reasonable to assume
that there are no errors in the reference image. If we assume
measurement errors in each point correspondence in subsequent

images so that , then the matrix
is formed by vertically stacking the matrices

(5)
Using a linear first-order approximation of the error in the

eigenvector , it is demonstrated in [14] that the constraint
must hold in order to ensure unbiased estimates

of . Using a TLS technique that accounts for the error-free
columns in to estimate [15], the requirement can be modi-
fied to

(6)

where is defined as diag(0,0,0,0,0,0,1,1,1).
In order to minimize the sensitivity to errors for the normal-

ized point correspondences, the condition expressed by (6) has
to be satisfied for the covariance of

(7)

Using (7), the normalization matrices and are derived in
the Appendix. As shown in the Appendix, can be set to the
identity matrix , and is an upper triangular matrix such that
the following equation is satisfied:

(8)

The above normalization matrix is similar to that proposed in
[16] for calculating the fundamental matrix. This normalization
translates the centroid of the point correspondences in the refer-
ence image to the origin and sets the two principal moments of
the point correspondences to unity

(9)

The effect of this anisotropic scaling (different scaling for the
and coordinates) is to form an approximately symmetric

circular cloud of points of radius one about the origin.
Monte Carlo simulations were performed to characterize

the effect of input data normalization on the performance of
the homography algorithm for two configurations of point
correspondences. In the first configuration shown in Fig. 2(a),
the point correspondences were distributed in an approximately
symmetric circular pattern about the point to be reconstructed,
i.e. a near-optimal configuration. In the second configuration
shown in Fig. 2(b), the point correspondences were dis-
tributed such that four of the points were nearly collinear, i.e.
a near-degenerate configuration. In the simulations, the point
correspondences in the reference image were error-free, while
zero-mean Gaussian noise (with standard deviations ranging
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Fig. 2. Comparison of reconstruction errors in reference image for different
point configurations with additive zero-mean Gaussian noise � in subsequent
images. (a) Near-optimal configuration of point correspondences; (b)
near-degenerate configuration of point correspondences; (c) reconstruction
error versus noise level � for 1) near-optimal configuration with normalization
(+) and without normalization (�); and 2) near-degenerate configuration
with normalization (�) and without normalization ( ). Each point in the plot
represents the mean of 1000 trials.

from to 5 pixels) was added to the point correspondences
in subsequent images. For simplicity, these point correspon-
dences were obtained using the identity homography mapping

. Using the resulting point correspondences, estimates of
the homography mapping, denoted by , were obtained. The
actual positions, , and the estimated positions, ,
of the reconstructed point were then calculated, along with the
mean Euclidean error . Fig. 2(c) shows the mean
Euclidean error as a function of the standard deviation of the
Gaussian noise. When a near-degenerate point configuration
is used, the relative performance of the normalized algorithm
improves as the standard deviation of the Gaussian noise in-
creases. Examination of the reconstruction errors suggests that
the effect of the normalization is to reduce the bias of the errors.
As expected, when the point correspondences are arranged in
a near-optimal configuration, the normalization had a minimal
effect on the reconstruction errors.

In conclusion, point correspondences that are evenly dis-
tributed in a radially symmetric manner about the point to be
reconstructed are more robust to input measurement errors, and
do not require normalization. The effect of normalization is
related to the condition number of the matrix defined in (3).
A large condition number for (i.e. is nearly rank deficient)
will amplify the effect of noise on the reconstruction error [12].
Appropriate normalization enhances the numerical stability
of the algorithm in such cases and reduces the bias of the
reconstruction errors.

D. Compensation for Geometric Distortion

In head-mounted eye tracking systems, the scene camera
often has a wide-angle lens to capture large portions of the
subject’s field of view. For such optical systems, perspective
projection is typically insufficient to model the imaging process
accurately, since nonlinear distortion is introduced to the optical
paths and the resulting images. This geometric distortion is
commonly decomposed into radial and tangential components
[10], and incorporated into (1) to form the augmented perspec-
tive projection camera model [17], [18]

(10)

where the radial and tangential distortions are defined
as

(11)

(12)

and . Three distortion coefficients ( , , ) are
employed to represent radial distortion, while two coefficients
( , ) are used to denote tangential distortion.
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Given this camera model, it is possible to compensate for
geometric distortion by converting the observable image coor-
dinates ( , ) to the ideal (but unobservable) image coordi-
nates ( , ) used in (1). First, the camera intrinsic parameters
and distortion coefficients are calculated using a flexible tech-
nique implemented in a MATLAB toolbox that relies on mul-
tiple views of a single 2-D planar calibration pattern [18]. A key
advantage of this technique is that planar calibration patterns are
simple and inexpensive to produce, unlike 3-D calibration ob-
jects that require perfectly orthogonal planes. Using the intrinsic
parameters and the distortion coefficients, the inverse mapping
of ( , ) to ( , ) can be estimated iteratively [17], and the
ideal image coordinates ( , ) can be subsequently calculated
by multiplying the intrinsic matrix by ( , ) in homogeneous
coordinates.

III. PERFORMANCE ANALYSIS

In Sections III-A and III-B, the performance of the
point-of-gaze estimation methodology is evaluated under
ideal and typical experimental conditions, respectively. The
criterion for evaluating the performance is point-of-gaze re-
construction error, which is defined as the Euclidean distance
between the actual and the reconstructed point-of-gaze in the
reference image. In order to eliminate the inherent variability
of actual eye position data, the reconstruction errors were
calculated for a set of points that were tracked in each image
and transferred by the homography algorithm to the reference
image.

A. Performance Using Exact Point Correspondences

To evaluate the performance of the methodology under ideal
conditions where exact point correspondences are available, a
set of 25 images consisting of multiple views of a planar black
and white checkerboard grid (8 6 squares) was obtained by
translating and rotating the grid in front of the stationary scene
camera component of the eye tracking system. For the experi-
ments described in this paper, a miniature charge-coupled de-
vice camera (ELMO ME411, Nagoya, Japan) with a viewing
angle of was used to obtain images with di-
mensions of 640 480 pixels. The entire checkerboard pattern
was visible in each of the 25 images which were selected to sim-
ulate head movements significantly larger than those expected
during visual scanning experiments. From an initial position
where the checkerboard was centered in the image at a distance
of 28 cm from the camera, the distances of the checkerboard
from the camera ranged from 18 to 35 cm, while the transla-
tional distances in the x and y directions ranged from 20 to 30
cm. The orientation of the camera relative to the checkerboard
ranged from to 115 in roll, and to 55 in pitch
and yaw. Point correspondences were subsequently extracted
with sub-pixel accuracy from the vertices of the checkerboard
[18], [19]. The four outermost vertices of the checkerboard pat-
tern were used to calculate the homography mapping between
views, while the remaining 44 vertices of the checkerboard pat-
tern were designated as the points to be reconstructed. This is
consistent with typical experimental setups, where the objects
of interest (and hence the points-of-gaze) are usually situated
within a region formed by four or more point correspondences.

Fig. 3. Histograms of reconstruction errors for the homography algorithm
with exact point correspondences. (a) With distortion compensation; (b)
without distortion compensation.

To determine the performance of the methodology with and
without distortion compensation, reconstruction errors were cal-
culated for each of the 600 possible image pairs (selected from
the set of 25 images) for a total of 26 400 observations. His-
tograms of the reconstruction errors obtained using the homog-
raphy algorithm with and without distortion compensation are
depicted in Fig. 3; note that reconstruction errors are expressed
in pixels, but may also be written in angular form using the con-
version factor of .

Using distortion compensation, the mean and median recon-
struction errors were 0.92 and 0.75 pixels, respectively, with a
maximum error of 6.00 pixels. As demonstrated in Fig. 3(a),
95% of the reconstruction errors were smaller than 2.2 pixels,
while 92.7% of the errors were smaller than 2 pixels, and 64.3%
were smaller than 1 pixel. When distortion compensation was
not used, the reconstruction errors were significantly higher,
with mean and median errors of 2.63 and 2.13 pixels, respec-
tively, and a maximum error of 16.1 pixels [see Fig. 3(b)]. The
largest differences in the performance of the methodology with
and without distortion compensation were observed to occur
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Fig. 4. Distinctive reference targets are used to determine point
correspondences in the visual scene. The outer set of targets is used for the
estimation of the homography mapping, while the inner set is used for the
performance analysis.

when the point correspondences between image pairs suffer
from varying degrees of distortions. For example, if one of the
point correspondences moves from a region of low distortion
in one image (central region) to a region of high distortion
in the second image (peripheral region), while other point
correspondences remain in a region of relatively low distortion,
the algorithm without the distortion compensation can have
relatively large errors.

The above results provide insight into the performance of
the point-of-gaze estimation methodology under relatively
ideal conditions. In the next section, the performance of the
methodology is evaluated under conditions that are similar to
those encountered in visual scanning experiments, i.e. where
matched point correspondences cannot be consistently obtained
with sub-pixel accuracy.

B. Performance in Typical Visual Scanning Experiments

In typical visual scanning experiments, subjects are presented
with a set of visual stimuli, while the subjects’ field of view is
continuously recorded by the eye tracker’s scene camera. Dis-
tinctive reference targets embedded in the periphery of the vi-
sual scene are typically used to accurately determine and match
point correspondences (see Fig. 4). First, objects in the image
that are consistent with the shape and intensity distribution of a
reference target are detected. Each potential target is then iden-
tified by cross-correlating the pseudo-random binary sequence
encoded in the outer portion of the target with a template that is
unique for each target. This identification process is verified by
comparing the relative locations of the potential targets to the
known geometric distribution of the reference targets. Finally,
the boundary points of the white circular region in the middle of
each reference target are used to estimate the target center. Ref-
erence targets are, thus, detected and estimated in real-time (at a
rate of 30 Hz) using a Pentium-II PC (233 MHz) equipped with
a frame grabber (Meteor II, Matrox Inc., Montreal, Canada).

In order to estimate the reconstruction errors associated with
such experiments, ten subjects were shown a single slide con-
taining four reference targets in the periphery of the slide and
four additional reference targets distributed through the central

region (see Fig. 4). The four outer point correspondences were
used to determine the homography mapping, and the reconstruc-
tion errors for the centers of the four inner targets were calcu-
lated. Using the homography algorithm with distortion compen-
sation, the mean and median reconstruction errors across all sub-
jects (based on 6600 video frames with four reconstructed points
per frame) were 1.51 and 0.93 pixels, respectively, with a max-
imum error of 15.50 pixels. 95% of the reconstruction errors
were smaller than 6.2 pixels, with 89.5% smaller than 2 pixels,
and 64.3% smaller than 1 pixel.

In a set of similar experiments to test the performance under
larger dynamic head movements, a subject was instructed to per-
form head movements that, in turn, spanned each of the six de-
grees of freedom: horizontal, vertical and torsional rotations;
and horizontal, vertical, and zoom translations. The range of
head movements performed by the subject exceeded the range of
head movements encountered in a typical study; head rotations
were in the range of in each direction, while head transla-
tions were in the range of 10 cm in each direction. The recon-
struction errors were similar to those observed in the previous
experiment, with no apparent dependence on rotation angle or
translation.

When the reconstruction errors in typical experiments are
compared with the results in Section III-A, it is clear that the
inability to consistently obtain exact estimates of the point cor-
respondences increases the probability of relatively large errors
( 2 pixels or 0.3 ). With exact point correspondences, 95% of
the reconstruction errors are less than 0.32 , compared to 0.90
in typical experiments. The above results can provide guidance
with regard to the minimum required separation between objects
in the field of view for visual scanning experiments. In order
to ensure that the probability of the reconstructed point-of-gaze
falling on the wrong object is less than 5%, the minimum sepa-
ration between objects should be greater than 1 .

If the points of interest are not in the plane defined by the
point correspondences, the reconstruction errors are dependent
on the changes in the 3-D orientation of the plane defined by the
point correspondences relative to the plane defined by the refer-
ence image. Changes in plane orientation are measured relative
to the image plane of the scene camera. The technique described
in this paper can be extended to work more generally in this sit-
uation, if the 3-D positions of the points of interest are known
relative to the reference points. Without this additional informa-
tion, errors due to the deviations from planarity can still be mit-
igated by 1) gathering intermediate reference images (with less
substantial inter-frame camera motion) and 2) defining multiple
sets of reference points so that each point of interest belongs to
a plane defined by one of these sets.

IV. IMPLEMENTATION IN A CLINICAL STUDY

The novel point-of-gaze estimation methodology was used
in a study on visual selective attention in mood disorders (de-
scribed in detail in [20]). This study directly examined visual
selective attention by monitoring the point-of-gaze of subjects
presented with multiple competing complex visual stimuli. The
primary hypothesis of this study was that relative to normal con-
trols, individuals with major depressive disorder would selec-
tively attend to visual images with dysphoric themes. The de-
pressed group for the study consisted of eight individuals who
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Fig. 5. Example of a study slide (top left: social theme; top right: threatening
theme; bottom left: dysphoric theme; bottom right: neutral theme) with arrows
representing saccadic eye movements.

met the standard Clinical Interview for DSM-IV-TR (SCID) cri-
teria for current major depression, and scored 16 or greater on
the Beck Depression Inventory (BDI). The control group con-
sisted of nine individuals who reported no psychological history
and scored 5 or less on the BDI.

Subjects were fitted with a head-mounted eye tracking system
[4], and seated in front of a portable projection screen where vi-
sual stimuli were back-projected. The visual stimuli consisted
of a series of slides, with each slide containing four images.
Four reference targets were placed in the corners of each slide.
The images on each slide fell into four main categories: neu-
tral stimuli, stimuli related to themes of loss and sadness (dys-
phoric), stimuli related to themes of threat and anxiety, and
stimuli relating to themes of interpersonal attachment and social
contact. The images were chosen based on the valence ratings
provided by the International Affective Picture System (IAPS)
[21], as well as the thematic content. Images relating to threat-
ening and dysphoric themes had valences ranging from 2 to 4,
while images relating to social themes had valences ranging
from 6 to 8. A total of 15 slides, eight study slides and seven
neutral slides, were shown to each subject for 10.5 s each. Each
of the four images on a study slide was selected from each of
the four themes previously listed (see Fig. 5). For each slide,
a reference image was captured, and the boundaries of the four
composite images were defined relative to the four reference tar-
gets on this image. The four reference targets were then tracked
for the duration of the slide presentation, and the eye position
data was mapped onto the reference image using the homog-
raphy algorithm with distortion compensation. By calculating
the amount of time the point-of-gaze fell within the boundaries
of each image, the viewing times of each of the four images
on each slide were obtained. The number of times that each
subject directs and redirects attention to a particular image (or
the viewing frequency) was also calculated. For each subject,
viewing times and viewing frequencies on images with the same
theme were summed up to generate the total viewing time and
total viewing frequency for each theme. As demonstrated in

Fig. 6. Total viewing time of images with dysphoric theme by subject group.
Each marker represents a single subject.

Fig. 5, the visual scan path of each subject can be recorded and
superimposed on each slide.

Fig. 6 depicts total fixation times on dysphoric images for
each subject in both the control and depressed groups. The pri-
mary finding was that the mean of the total amount of time that
the depressed group spent looking at images with dysphoric
themes ( ,

) was significantly greater than that of the normal control
group ( , ), , . The
mean viewing frequency of the control group on images with
dysphoric themes ( , ) was not signifi-
cantly different from that of the depressed group ( ,

). Similar statistical tests were performed on sub-
sets of eight random images from the neutral slides. In all cases,
the total viewing time of the subsets of neutral images did not
differ significantly between the depressed and control groups,

, . In addition, no significant differences
were found in the viewing patterns of the control and depressed
groups due to the relative positions of the images on the screen,
i.e. the mean of the total viewing times on the left right, top
and bottom portions of the slides did not differ significantly,

, . The above results
suggest that depressed subjects selectively attend to stimuli with
themes of loss or sadness, and that depression appears to influ-
ence the elaborative stages of processing when dysphoric im-
ages are viewed.

V. CONCLUSION

A new methodology to determine the point-of-gaze with
a head-mounted eye tracking system has been presented. It
combines the well-known homography algorithm with dis-
tortion compensation, to determine the point-of-gaze from
point correspondences in images obtained by the eye tracker’s
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scene camera. This methodology does not require either a
separate head tracking system or accurate 3-D measurements
of objects in the subject’s field of view to determine the visual
scanning behavior (i.e. viewing time and viewing frequency
of each object). The point-of-gaze estimation methodology
can be used to assess visual scanning patterns accurately (to
less than 0.90 ). As such, it can provide insights into selective
attention processes that can aid in the diagnosis and evaluation
of subjects with mood disorders. The reduced complexity of the
methodology allows it to be used in applications that require
portability, flexibility, and a changing visual scene.

APPENDIX

DERIVATION OF NORMALIZATION MATRICES

In order to satisfy (7), we need to determine the covariance
of . First, we denote the errors in the point correspondences
as and the errors in the normalized point
correspondences as . Substituting ,

, , and in (5) with their normalized counterparts , ,
, and yields

. . .
...

...

...

...

(13)
The expression can be evaluated by calculating

the covariance matrix of the errors in the normalized point cor-
respondences. From the definition of , we have

(14)

Assuming that the errors in the second image are zero-mean
independent identically distributed, i.e. for all ,

and , we can
also write in terms of the elements of

(15)

Equating (14) and (15), and
. Combining (13) with (7), the following condition

has to be satisfied in order to minimize the sensitivity of the
matrix to errors in the input point correspondences:

(16)
In (16), should be set to N to

keep the third component of equal to 1. Since is an arbitrary
constant, there are no constraints placed on the entries of the
matrix . For convenience, can be set to . The matrix can
be derved by rewriting (16) as

(17)

Using Cholesky factorization, we can then solve for the upper
triangular matrix , so that .
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